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Abstract

Decorating arbitrary meshes with Celtic knots requires
polygonal meshes with regular connectivity and close to
regular face geometry. Because these properties are often
irregular, especially in scanned or reconstructed models,
the Celtic knots produced may be erratic and undesireable.
In this paper we remesh models based on planar tilings de-
fined by the user. Such pattern-oriented surfaces allow us
to decorate models with attractive Celtic knots in a consis-
tent fashion and may be applicable to a large number of al-
gorithms that are sensitive to mesh structure.

1. Introduction

Object decoration has been a primary outlet for artistic
expression in many cultures yet the research towards com-
puter generated decorations has not been proportional to its
influence. Computer graphics scientists have typically con-
centrated their efforts on more traditional media such as
pen-and-ink and painting. The decoration of objects with
Celtic knotwork (a form of artwork that consists of rhyth-
mically interwoven threads) has become widespread in re-
cent years. It is seen frequently in jewelry, tattoos and as or-
nament on many everyday items.

The goal of this work is to decorate the surfaces of 3D
meshes with Celtic knotwork. Kaplan and Cohen [12] de-
scribe methods to produce Celtic artwork in both 2D and
3D. The edges of a planar graph (in 2D) and the 2D mani-
fold mesh (in 3D) define the pattern of the output knots. In
earlier work, allowing the user to design repetitive tilings
of geometric shapes was shown to be the key to produc-
ing attractive knots. Designing tilings is easy for a planar
surface but is extremely difficult for surfaces which are 2D
manifold. Therefore, in 3D, the edges of the original in-
put meshes were used to compute the knots. In such in-
put meshes the geometric properties such as face structure
and edge connectivity are typically arbitrary and the resul-
tant knots seemed random and lacked the repetitive stylized
quality that makes Celtic knotwork attractive, as seen in
Figure 1. Therefore, we desire a process by which the user

can design infinite planar tilings in 2D and transfer such
tilings onto 3D meshes for the calculation of Celtic orna-
ment.

We propose a remeshing technique that imposes shape
and connectivity contraints on the resulting mesh. Our tech-
nique samples the original mesh with a pattern defined by a
planar tiling thus allowing us to transfer designs in a plane
to the mesh surface. The Celtic knots computed on such
meshes accurately transfer the original artistic intent of the
user in a way not previously possible. Furthermore, there
may be a large class of artistic algorithms that can benefit
from such meshes. The resulting meshes may be more at-
tractive and artistic, due to the patterns embedded on the
surface, than meshes produced using other techniques.

1.1. Approach Overview

Given a surface mesh we obtain a spherical parameteri-
zation of the surface as described by Praun and Hoppe [15].
We unfold the spherical parameterization into a geometry
image. We define rules that allow the user to tile the plane
with an infinite lattice of a specific pattern of interlocking
polygons. Since the geometry image exists in a 2D plane,
we construct such a lattice within the geometry image do-
main. The vertices of this lattice define the sampling pattern
used to construct a new mesh from the geometry image. Fi-
nally, we compute Celtic knots from the new surface mesh.



Figure 1. An example of the knots produced
on the original bunny model is shown. Notice
that the thread pattern seems essentially ran-
dom.

2. Related Work

2.1. Surface Parameterization

Associating a surface with a planar domain has tradi-
tionally consisted of partitioning the surface into charts and
packing the charts into a texture atlas. Other approaches
have used the connectivity of the surface charts to form
a domain complex (semi-regular remeshing), such as that
described by Khodakovsky et al. [13]. Because we are at-
tempting to transfer an infinite tiling of a planar domain,
chart based methods which do not result in a planar param-
eterization may not be appropriate. Gu et al. [7] introduced
geometry images, in which the geometry is resampled into
a completely regular 2D grid. Praun and Hoppe [15] and
Gotsman et al. [6] both describe methods for mapping genus
zero objects to a sphere to produce a spherical parameteri-
zation.

2.2. Remeshing

A great number of remeshing schemes have been pro-
posed. A good review is given by Alliez et al. [2]. Most
of these combine vertex optimization with mesh simplifica-
tion but place no constraint on the local shape of mesh ele-
ments. Alliez et al. [1] have proposed a remeshing scheme
that samples the surface anistropically to produce a mesh
whose edge connectivity follows the lines of maximal and
minimal curvature. While this method is the closest in spirit
to ours, it shares very little in common procedurally with
our algorithm. Gu et al. [7] and Praun and Hoppe [15] have
both shown how to remesh from geometry images. While
they remesh with quadrilaterals, we will demonstate how to

remesh arbitrary geometries taking into account the bound-
ary rules they describe.

2.3. Ornament and Tilings

Kaplan and others have examined the generation and ap-
plication of shapes in several contexts such as Islamic art-
work [9], symettrohedra [10], and Escherized shapes [11].
Both the Escherization and Islamic art systems produce
tilings of interesting polygonal shapes in a 2D plane but
are too specific to their stated problems to fully character-
ize the set of patterns we might wish to produce. The sym-
metrohedra produce polyhedra by embedding polygons on
a sphere. While this seems ideal for the spherical param-
eterization, it does not encompass a large enough class of
patterns to be sufficient for our needs and offers no ability
for higher level control over the patterns produced. Neyret
and Cani [14] create pattern based ornament by construct-
ing a tiling of equilateral triangles on the original mesh.
Their method was limited to triangular primitives and re-
quired extensive user design to achieve texture primitives
that matched along triangle boundaries.

2.4. Celtic Knotwork

The need for quality meshes has been noted extensively
in the context of computer generated Celtic knots which
most often have relied on grid meshes to achieve inter-
esting knots, largely due to the regularity of the struc-
ture [5, 12]. Browne [4] attempts to construct semi-regular
meshes around 2D shapes in order to impose order on the
resulting knots and notes the importance of quality mesh
structure for font generation. We use the method described
by Kaplan and Cohen [12] due to its ability to construct
knots around arbitrary mesh configurations and to construct
coherent knots in 3D.

3. Parameterization

Since we are attempting to transfer a planar tiling pat-
tern onto a 3D surface we require a parameterization that
associates a planar domain with the 3D mesh. While ob-
taining a parameterization is not the goal of this work it is
a critical component of our technique. The infinite planar
tiling imposes the constraints that the choice of parameteri-
zation model should be continuous in the plane and should
be able to expand to an infinite plane. If a parameteriza-
tion does not expand to the potentially infinite plane, there
will be seams over which the continuity of the tiling pat-
tern will be broken.

These constraints rule out the use of chart based meth-
ods such as Khodakovsky et al. [13] which have the desire-
able properties of low distortion and the ability to handle ar-



bitrary genus. They evaluate to a planar domain but their at-
lases are not continuous. Traditional texture atlases also lie
in the plane but are not continuous. Global conformal maps
[8] don’t work well for genus zero objects since they intro-
duce cuts and do double covering, changing the object to
a higher genus. They would work for higher genus mod-
els producing several infinitely tiled planes with transition
cuts between them. These transitions make them difficult to
work with but might be a useful avenue for future work. The
original geometry images described by Gu et al [7] would
not allow us to tile the infinite plane and have irregular
boundary conditions which it would make it difficult to ap-
ply the tiling across the seams. We use the spherical param-
eterization described by Praun and Hoppe [15]. Their pa-
rameterization method transforms the original mesh into a
geometry image which defines a square planar domain with
dimensions [0→1] in both x, y. This meets our requirements
of planar continuity and the ability to expand to an arbitrar-
ily large plane. This method does constrain us to use genus
zero surfaces but this describes a large enough class of mod-
els to be considered useful. The boundary conditions of the
geometry image may introduce seams but they are regular
and predictable and can be handled as a special case.

We will describe the basics of the spherical parameter-
ization but refer the reader to [15] for more information.
Given a surface mesh M , a spherical parameterization of the
surface is created, (S→M) by forming a single continous
invertible map from the unit sphere to the mesh. Each mesh
edge is mapped to a great circle arc and each mesh trian-
gle is mapped to a spherical triangle bounded by these arcs.
Next, a spherical parameterization (S→D) of a domain
polyhedron, D, is created from either a tetrahedron, octa-
hedron or cube. Then the domain is unfolded into the ge-
ometry image (D→I). Because the domain of the polyhe-
dron parameterization matches that of the spherical param-
eterization, the spherical parameterization of M can now
be mapped to the geometry image. The geometry image (as
shown in Figure 2), is essentially a 2D square representa-
tion of the original object. This method is quite robust, but
will introduce distortion near narrow extremities.

We use an unfolded octahedron as the polyhedron to
specify the domain map with. This unfolds cleanly into a
square domain map and permits simple extension rules that
allow traversal over the boundaries in a continous manner.
The key is to extend the grid by rotating it 180◦ around the
midpoints of the boundaries, leading to the topology shown
in Figure 3.

4. Tiling Patterns

Prior to the remeshing operation, we tile the plane with a
user-defined pattern of specific polygonal shapes within the
domain of the geometry image.

Figure 2. The bunny and gargoyle models and
their corresponding geometry images.

Figure 3. Left: Boundary conditions for a
spherically parameterized geometry image
using an octahedral unfolding. The geometry
image is represented by the central square.
Right: The boundaries of the geometry image
are shown in blue on the bunny model.

The tiling patterns we show are periodic and can be rep-
resented as translational units and translation vectors. A
translational unit is a set of interlocking polygons that rep-
resents the basic pattern. Translation vectors define how to
translate “copies” of each translational unit to tile the plane
with the pattern. To perform the tiling, we draw an initial
translational unit within the geometry image domain. Then
we create additional copies of the translational units and
translate them by the translation vectors. We continue this
until the domain space is completely occupied. Any poly-
gons whose edges fall outside the domain boundary are not
added. In order to align the pattern appropriately with the
geometry image the bounds of the translational unit should
be integral divisors of the domain dimensions.

For examples of patterns laid over geometry images see
Figure 9.

4.1. Boundary Conditions

The octahedral unfolding that produces the geometry im-
age creates special boundary conditions. Regard Figure 5a.
The unfolding process essentially “slices open” the octagon
along the edges from one corner vertex. The result of this
is that the corner vertex, E, actually occurs at all four cor-
ners of the geometry image and each edge adjacent to ver-
tex E is “split” and occurs symmetrically about the mid-



Figure 4. At left is a simple translational unit
with translation vectors in each of the four
cardinal directions. The planar tiling of the
translatioal unit is shown in the middle. A
more complex pattern created with our sys-
tem is shown at right.

point of each geometry image boundary edge.
Because of this, any vertex or edge crossing that oc-

curs along the domain boundary edge along the segment
AE must also occur symmetrically about vertex A along
the segment AE′, as seen in Figure 5b. If this condition
does not hold, there will be gaps in the new mesh where the
edges AE and AE′ connect since the the new geometry will
not approach the edge uniformly. Because the tilings must
maintain this 180◦ rotational symmetry about the midpoints
of the boundary edges, our patterns tend to have lengths and
widths that are integral divisors of the domain dimensions
and expand uniformly in the x and y directions. Rotating the
tiling patterns by angles that are not multiples of 90◦ may
not be appropriate in many cases since changing the axis of
expansion won’t preserve the rotational symmetry.

Additionally, there are several cases in which pat-
terns may preserve the above properties may still evaluate
to a non-manifold surface. The symmetry about the mid-
point along any boundary edge means that vertices that
are equidistant from the midpoint along the bound-
ary edge evaluate to the same position, as we would expect.
Examine the case shown in Figure 5c. In this case, both ver-
tices that compose edge BB′ are really the same vertex.
Therefore, this edge evaluates to a single vertex so it is re-
moved from the polygonal face.

When a figure has a similar topology to Figure 5c but
there is a vertex at the midpoint, as seen in Figure 5d, the
edges on either side of the midpoint A are really the same
edge. Geometrically, this evaluates to a polygon that has a
set of edges that move towards the interior and double back
on each other. To make this face valid, we remove both of
these edges from the polygon.

In Figures 5c-d, edge removal left us with a polygon with
only two edges which cannot be a closed polygonal face.
We remove such faces from the output mesh and the result-
ing boundary seam on either side will be BC.

Another problem that may occur is when two shapes are
geometrically identical in 3D despite occupying different
areas of the domain in 2D. In Figure 5e, both faces have
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Figure 5. a)Unfolding an octahedral domain
into a planar domain. b) Domain boundary
symmetry requirements. The red lines repre-
sent the boundary of the geometry image do-
main. A is the midpoint of the left edge of the
geometry image. Any vertex B along a do-
main boundary edge must be matched by an
equivalent vertex 180◦ about A. Edges such
as AB and AB′ are geometrically identical. c-
e) Error conditions near boundary midpoints.

matching boundary vertices and identical interior vertices.
Since both of these shapes are identical, we end up with a
geometrically flat area on the remeshed model, where both
faces end up being essentially flip sides of a coin. We de-
tect such situations and subdivide the non-boundary edges
CB and CB′ to differentiate between the two faces.

We apply polygons across domain boundaries so that
the pattern fully tiles the remeshed model. In some in-
stances, however, polygons applied across the boundary do
not match up with the available space on the opposing side
of the boundary. This may occur when patterns do not main-
tain the required rotational symmetry or are drawn off-axis
or at the wrong scale. Such cases should still be handled
since there may be many patterns that we would like to use
that do not meet the previously stated requirements.

When this does occur, it leaves holes in the new mesh
as seen in Figure 6. While there may be no perfect solu-
tion to this, besides reorienting the pattern so that it is situ-
ated correctly, there are several methods that will allow us
to obtain useable meshes. First, we can pull all vertices near
the domain boundary to actually lie on the domain bound-
ary. This has the effect of filling the remaining space and
preserving the topology of the pattern though shapes may
become larger than they would normally be and the transi-
tions between shapes along the boundary may not be pre-
served. Second, we can fill the remaining open space near
the boundaries by inserting polygons in that space. These



Figure 6. If a pattern does not approach the
boundary correctly (as in the two leftmost im-
ages), a variety of techniques may be used to
handle the boundaries appropriately. In this
case, the vertices near the boundary have
been dragged to the boundary and adjacent
polygonal faces across the domain bound-
ary have been stiched together. Here, the left
edges of the rectangular images are the left
boundary edges of the geometry image.

polygons are formed by walking along the remaining open
edges of the pattern and creating polygons between vertices
that touch the domain boundary. This minimizes distortion
of the pattern but does not preserve the pattern topology.

Because the domain boundaries require rotational sym-
metry about their midpoints, if the pattern of vertices and
edge crossings between segments AE and AE ′, as seen in
Figure 5b, do not match, then there will be discontinuities in
the new mesh. To handle this, for each vertex in AE that is
not matched in AE′ we insert a new vertex at the appropri-
ate location and vice versa. The edges and polygons along
AE and AE′ are remapped to take the new vertices into ac-
count. This method does not preserve the topology of the
pattern but is important for producing closed models.

5. Remeshing

The vertices of the tiling pattern are the locations at
which we sample the geometry image and the edges of the
pattern define the connectivity of the new mesh. For each
sample vertex, we find the barycentric coordinates of the
triangle that the sample location lies within in the geometry
image. The new vertex position is the location defined by
the barycentric coordinates within the triangle in the orig-
inal model that the geometry image maps to. The result of
this algorithm is a 2D manifold mesh with the pattern of
shapes embedded into its structure.

We have shown simple periodic tilings here since that is
the class of patterns that work well with the Celtic knots al-
gorithms. There is no reason that other patterns that fill the
domain space could not be used to perform the remeshing.

At this point, we have essentially remeshed twice; once
to obtain the geometry image and a second time to embed
the pattern. It is possible to instead transform the pattern
vertices back through each of the mappings (parametriza-
tion and geometry image) to the original model instead of
doing a linear approximation directly on the geometry im-
age with the trade off of slightly more complex code. We
chose not to do this since the geometry images we worked
with were extremely high resolution and the results we ob-
tained worked well with the Celtic Knots program and were
visually appealing.

6. Knotwork

Celtic knotwork is a type of art that consists of inter-
twined threads that maintain a characteristic over-under pat-
tern at each corssing. The method of producing Celtic knots
described by Kaplan and Cohen [12], uses the midpoints
of each edge in the mesh to define the crossing positions
and connectivity of the threads in the knot. The thread paths
connect adjacent crossing positions which is the reason that
the shape of the edges is of critical importance in design-
ing Celtic knots (see Figure 7).

An important question to ask is: if we have a planar pa-
rameterization of the mesh and can calculate planar knots
easily, why remesh at all? Why not use the parameteriza-
tion as texture coordinates and texture map the ornament?
Why should the mesh structure bear this load? The answer
is that the knots program constructs splines paths for the
threads based on the midpoints of each edge. If we texture
map a planar knot onto the surface, the knot threads will ap-
pear disjoint and “painted” onto the surface of the object
whereas calculating knots based on the new mesh will re-
sult in smooth knots that approximate the surface but do not
exactly lie on it.

The crossing patterns of the Celtic knots can be changed
by associating a breakpoint value at every edge. These
breakpoint values (0,1 or 2) are used to change the thread
paths of the knot and give interesting variations on knot pat-
terns. With large meshes, it is very time consuming to input
these breakpoints by hand. We associate breakpoint values
with each edge of each polygon defined in the pattern ap-
plication system. We save the breakpoint information along
with the model file and they are read as a pair into the Celtic
knots program which computes the knots automatically, as
seen in Figure 9 bottom.

7. Results

The results of this algorithm may be evaluated from two
perspectives: the quality of the remeshed models and the
quality of the knots produced from these meshes though it



Figure 7. An example of a 2D Celtic knot
produced on a graph of 2x2 squares. Notice
that crossings occur at each edge midpoint
and connect adjacent edge midpoints except
at the breakpoint edges. Regular edges are
colored black. Breakpoint edges are colored
blue and yellow.

must be stressed that the remeshed models are a pleasant
by-product rather than our goal.

A variety of remeshed examples appear in Figures 6- 9.
The class of tilings that we can successfully create and em-
bed that maintain the boundary constraints is large and en-
compasses all of the patterns we transferred from the 2D
Celtic knot program. With the techniques we have presented
for handling boundary conditions, we are able to handle all
2D patterns, though the behavior near the boundaries is not
guaranteed to preserve the topology or minimize distortion.

The quality of the approximation can be affected for
three reasons: parameterization, pattern scale (i.e. sample
volume) and pattern shape. We do not measure the distor-
tion of the geometric properties of the new mesh since that
is a problem with parameterization and as parameterization
techniques improve, so will the results of our method. Dis-
tortion does occur on narrow extremities consistent with the
distortion in the spherically parameterized geometry image.

The images presented here were done with relatively
coarse patterns. To minimize the error between the origi-
nal and new meshes, the tiling patterns can be drawn at as
fine a scale as desired. Because the sampling pattern pro-
duced by the tiling may not be uniform, different parts of
the remeshed model may approximate the original model
less well than others depending on the density of samples.
Also, because the polygons of each face are not tesselated
and may be arbitrarily complex (depending on user prefer-
ence), the faces are most probably non-planar for any non-
triangular faces. Fortunately, this is not a problem for us
since the Celtic knots program does not require planar faces.

The 3D knotwork produced with this technique is a sig-
nificant improvement over previous results. An example of
knots produced with the previous method is shown in Fig-
ure 1 at left. Note that the threads are essentially random and
contain no repetitive patterns or motifs (a hallmark of Celtic
design). Examples of the type of results possible using the
the remeshed models are shown in Figure 9. The new im-

ages show a variety motifs taken from classical Celtic knot-
work repeated over the surface of the models. The threads
are coherent and create repeated figures that traverse the en-
tire surface in a consistent fashion.

Because the output of the Celtic knots program is so
dependent on the quality of the mesh, prior work only
showed quality knots calculated over uniform polyhedra
since the quality of more interesting models was so poor.
The remeshing procedure presented here has made knot
decoration of 3D meshes a viable tool for animators and de-
signers.

8. Conclusion and Future Work

We have presented techniques for creating 2D tilings
of user-defined patterns of polygons, for remeshing mod-
els with those patterns and for applying the results of these
methods to the automated construction of Celtic knotwork.

Our remeshed models are 2D manifold and correctly em-
bed the desired pattern of shapes yet there are several natu-
ral avenues for further research. Currently, our system only
handles genus zero models. We would like to extend this
to include other methods of parameterizations that include
models of higher genus. Remeshing has been a widely re-
searched area in recent years and we believe that the ap-
plications relevent to pattern-oriented remeshing will grow
as such meshes become available. Our technique naturally
compresses the mesh but is almost definitely not an opti-
mal compression.

This area of research has a number of natural extensions
to texture synthesis techniques. Each vertex of the remeshed
model can be used as coordinates in a texture parameteriza-
tion with texture coordinates could be generated automati-
cally from the tiling application.

The 3D Celtic knotwork produced in this framework is
significantly better than 3D results from previously pub-
lished work. The ability to embed arbitrary patterns of
shapes into the meshes allows us to transfer previously de-
signed motifs and designs from 2D onto models allowing
us a large measure of control in designing specific deco-
rations. The extension of this system to include non-genus
zero models would allow us to use models of all the charac-
ter symbols. This would allow us to decorate an entire font
set ( a traditional Celtic decoration motif) automatically by
remeshing all the character models with a single pattern and
computing knots on the remeshed models automatically.

Pattern-oriented remeshing has further implications for
transferring decorative toolsets from 2D to 3D. It seems nat-
ural to extend the work of Wong et al. [16] in floral decora-
tion, Kaplan and Salesin [11] in escherization and others to
compute 3D decorations using such meshes. This may have
far reaching implications for creating a wide variety of or-



nament directly on 3D models which could be a useful tool
for artists and animators.
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Figure 9. Each row represents: At left are the geometry images with tiling patterns overlaid. Inset
are larger views of the tiling patterns. Blue areas near the borders are edges that overlap the do-
main boundary. Next are the results of a remeshing performed with the tiling pattern. At right are
examples of Celtic knots computed on the remeshed models.


