
Interactive watercolor rendering

with temporal coherence and abstraction

Adrien Bousseau, Matt Kaplan, Joëlle Thollot and François X. Sillion
ARTIS/GRAVIR-INRIA Grenoble∗

(a) (b) (c)

Figure 1: Various watercolor-like images obtained either from a 3d model (a,b) or from a photograph (c) in the same pipeline.

Abstract

This paper presents an interactive watercolor rendering technique
that recreates the specific visual effects of lavis watercolor. Our
method allows the user to easily process images and 3d models and
is organized in two steps: an abstraction step that recreates the uni-
form color regions of watercolor and an effect step that filters the
resulting abstracted image to obtain watercolor-like images. In the
case of 3d environments we also propose two methods to produce
temporally coherent animations that keep a uniform pigment repar-
tition while avoiding the shower door effect.

Keywords: Non-photorealistic rendering, watercolor, temporal
coherence, abstraction.

1 Introduction

Watercolor offers a very rich medium for graphical expression. As
such, it is used in a variety of applications including illustration,
image processing and animation. The salient features of watercolor
images, such as the brilliant colors, the subtle variation of color
saturation and the visibility and texture of the underlying paper, are
the result of a complex interaction between water, pigments and the
support medium.

In this paper, we present a set of tools for allowing the creation
of watercolor-like pictures and animations. Our emphasis is on the
development of intuitive controls, placed in the hands of the artists,

∗ARTIS is a team of the GRAVIR/IMAG research lab (UMR C5527
between CNRS, INPG, INRIA and UJF), and a project of INRIA.

(a) (b) (c)

Figure 2: Real watercolor (c©Pepin van Roojen). (a) Edge dark-
ening and wobbling effect, (b) pigments density variation, (c) dry
brush.

rather than on a physically-based simulation of the underlying pro-
cesses. To this end, we focus on what we believe to be the most
significant watercolor effects, and describe a pipeline where each
of these effects can be controlled independently, intuitively and in-
teractively.

Our goal is the production of watercolor renderings either from
images or 3d models, static or animated. In the case of animation
rendering, temporal coherence of the rendered effects must be en-
sured to avoid unwanted flickering and other annoyances. We de-
scribe two methods to address this well-known problem that differ
in the compromises they make between 2d and 3d.

In the following, we will first review the visual effects that occur
with traditional watercolor and present related work. Our pipeline is
then described for images and fixed viewpoint 3d models, followed
by our methods that address the temporal coherence of animated 3d
models. Finally, we will show some results before concluding.

2 Watercolor effects

Curtis et al. [1997] listed the specific behaviors which make wa-
tercolor so distinct among painted media, that probably account for
its popularity. We describe here the most significant and specific
effects in watercolor, as illustrated in Figure 2 by pictures of real
watercolor found in [van Roojen 2005].

First, the pigments are mixed with water but do not dissolve

totally. The result is that, after drying, even on a totally smooth
paper, the pigment density is not constant (see Fig. 2-(b)). This
manifests itself at two different scales: on the one hand there are
low-frequency density variations due to a non homogeneous repar-
tition of water on the canvas: the turbulence flow; on the other hand
there are high-frequency variations due to non-homogeneous repar-
tition of pigments in water: the pigment dispersion. In addition, the
grain of the canvas can also introduce density variations since the
pigments are deposited in priority in cavities of the paper.

Second, the fluid nature of watercolor creates two effects along
the borders of colored regions: edge darkening due to pigment mi-
gration and a wobbling effect due to paper grain (see Fig. 2-(a)). In
the case of a “dry brush” the paper grain also creates some white
holes in the brush strokes when a nearly-dry brush only touches
raised areas of the paper (see Fig. 2-(c)).

Finally, watercolor is usually created by a human, using a brush,
often of a large size, and therefore represents a scene in a more
abstracted way than a photograph. We believe that abstracting the
shape, colors or illumination of the original scene is crucial to keep-
ing the aesthetics of watercolor. Although this is true of most paint-
ing and drawing styles, the technical constraints of watercolor typ-
ically result in less precise details than other techniques.

We do not target the diffusion effect, also described by Curtis,
for two main reasons. First this effect is often avoided by the artist
when trying to depict “realistic” scenes. In such a case the lavis
technique (wet on dry) is preferred. Second, this effect typically
requires a fluid simulation, and would certainly not be temporally
coherent. We thus leave this type of visual effect for future work
and instead concentrate on uniform-color regions.

3 Related Work

Previous research in watercolor rendering can be grouped into two
broad categories: Physical simulation of the media and image fil-
ters.

Physical simulations attempt to simulate all fluid, pigment and
paper interactions. Curtis et al. [1997] described the critical effects
created by watercolor media and presented a system that created
convincing watercolor renderings. Their work was an extension of
Small’s [1991] connection machines. Curtis’ method, while con-
vincing, is extremely computationally expensive. Van Laerhoven et
al. [2004] demonstrated an interactive method for rendering brush
strokes painted by the user. Rendering eastern style inks is a related
area that may be considered in this category [Chu and Tai 2005].
In this case the focus is more on the dispersion effects (wet on wet
technique) than on lavis technique. Moreover, watercolor is a me-
dia consisting of a complex series of interactions between multiple
layers of paint that diffuse pigment and water in ways that relate
precisely to the method and area of their application. It is not clear
that such methods are suitable for animation since the positions of
painted regions in relation to one another necessarily change in an-
imations. The interdependence of the qualities that make an image
look like a watercolor painting may be too high to allow true tem-
poral coherence.

Image processing filters consist of using image, and other G-
buffers (like depth or normal buffer) as input to create a watercolor-
like image that is based on an empirical recreation of the relevant
effects rather than a physical simulation. These methods are fast
and can typically be performed at interactive speeds but lack the
richness of physical simulations. Lum and Ma [2001] present a
multi-layer approach inspired by watercolor painting. Their work is
performed in 3d object space to ensure frame-to-frame coherence.
Line integral convolution is applied along the principal curvature
directions to render brush-like textures. Burgess et al [2005] cre-
ated a similar system, using Wyvill noise to create stroke textures.
Luft and Deussen [2005] abstract ID images at their boundaries to

create flow patterns and edge darkening. These effects are typically
isolated in real paintings and do not occur simultaneously as in their
method. Furthermore, abstracting at the object level removes all
detail about surface shape. Lei and Chang [2004] demonstrate a
rendering pipeline using a GPU to create watercolor effects at in-
teractive speeds. They require the user to “pre-paint” each object
using a lit sphere interface. All flow and granulation effects are
then encoded in a 1d texture and rendered in a manner similar to
a toon rendering [Lake et al. 2000]. Encoding flow effects in a 1d
texture is too abstract for adequate detail on a smoothly changing
3d surface. Furthermore, lit sphere lighting specification may be
prohibitive for a large number of objects or changing light sources.

Johan et al. [2005] used watercolor principles to create brush
strokes in image space but they do not present a method for water-
color rendering.

Much of this previous work makes use of the Kubelka-Munk
model to simulate the composition of pigments. This model is phys-
ically based but limits the choices of colors to a predefined pigment
library. In the case of an image input (like in [Curtis et al. 1997])
a color reconstruction has to be done to choose the right pigments
for a given color. We propose in this work a more intuitive color
treatment that stays close to the original color of the input.

On the other hand, temporal coherence of brush strokes has been
an active area of research since there is an inherent conflict between
a 3d motion field and marks created in a 2d plane. Various methods
has been presented either in object space like [Meier 1996] or in
image space like [Wang et al. 2004]. The shower door problem
between the canvas and objects in the scene has been addressed
in [Cunzi et al. 2003; Kaplan and Cohen 2005].

Watercolor is, in our opinion, not exactly a mark-based render-
ing technique because the pigments can not be considered as single
brush strokes; on the other hand the pigments have to follow the
objects in the scene so we cannot directly apply the dynamic can-
vas technique as in [Cunzi et al. 2003]. The temporal coherence
methods we present are extensions of these previous techniques.

4 Single-image pipeline

Our work is directly inspired from previous techniques, however we
do not restrict ourselves to physically realizable images. Instead,
we purposely lift the constraints inherited from the physics of real
watercolor since they can be avoided by the use of the computer.
We prefer to offer a system that reproduces watercolors visual ef-
fects, and let the user control each of these effects independently,
even if the particular combination that results would not make sense
in the physical world. Thus, we do not need to use the Kubelka-
Munk pigment model or a physical fluid simulation as in previous
approaches.

In order to obtain the effects mentioned in Section 2 we propose
a unified framework using the pipeline shown in Figure 3 and the
accompanying videos, which takes as input either a 3d scene or a
single image.

Our contributions are (a) to provide the user with various abstrac-
tion steps allowing the creation of the uniform color regions needed
in watercolor, and (b) to provide a simple color combination model
that ensures a plausible result while avoiding physical constraints.

We now describe each step of the pipeline. For clarity of expo-
sition, we begin with the second stage (watercolor effects) before
considering the various abstraction possibilities.

4.1 Watercolor effects

The input to this part of the pipeline is an abstracted image that can
come either from a 3d rendering or from a processed photograph.
Figure 4 illustrates the successive steps in the case of a 3d model.

abstraction
Illumination

− Cartoon shading
− Normal smoothing

Edge darkening

Pigment density
variation:

− Paper grain
− Low frequencies
− High frequencies

Paper effects:

− Dry brush
− Wobbling

− Segmentation

abstraction
Color regions

3d model

Image

Morphology

Abstraction steps

Abstracted
image

Watercolor effects

Watercolor
image

Figure 3: Static pipeline: Our pipeline takes as input either a 3d model or a photograph, the input is then processed in order to obtain an
abstracted image and finally watercolor effects are applied to produce a watercolor-like image.

The main effect in watercolor is the color variation that occurs in
uniformly painted regions. We first present the technique we use to
reproduce these variations by modifying the color of the abstracted
image and then we describe all the effects specific to watercolor.

4.1.1 Color modification

C

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.81.6 2d =

Figure 5: Darkening and lighting of a base color C (here
(0.90,0.35,0.12)) using a density parameter d.

As mentioned earlier we chose not to use a physical model to
describe color combinations. The essential positive consequence of
this choice is that the user can freely choose a base color (think of
a virtual pigment), whose variation in the painted layer will consist
of darkening and lightening, as shown in Figure 5.

We build an empirical model based on the intuitive notion that
the effects due to pigment density can be thought of as resulting
from light interaction with a varying number of semi-transparent
layers. Consider first a color C (0 < C < 1) obtained by a uniform
layer of pigment over a white paper, we can interpret this as a sub-
tractive process where the transmittance of the layer is τ =

√
C (the

observed color is the transmittance squared since light must travel
through the layer twice). Adding a second layer of the same pig-
ment therefore amounts to squaring the transmittance, and hence
also the observed color.

We need to be able to continuously modify the color, rather
than proceeding with discrete layers or squaring operations. A
full, physically based analysis could be based on the description
of a continuous pigment layer thickness and the resulting exponen-
tial attenuation. Rather we obtain similar phenomenological effects
by introducing a pigment density parameter d, which provides the
ability to continuously reinforce or attenuate the pigment density,
where d = 1 is the nominal density corresponding to the base color
C chosen by the user. We then modify the color based on d by re-
moving a value proportional to the relative increase (respectively
decrease) in density and the original light attenuation 1−C. The
modified color C′ for density d is thus given by

C′ = C(1− (1−C)(d −1)) (1)

= C− (C−C2)(d −1)

Note that the value d = 2 corresponds to the two-layer case dis-
cussed above and to a squared color.

4.1.2 Pigment density variation

As described in section 2 the density of pigments varies in several
ways. We propose to add three layers, one for each effect: turbulent
flow, pigment dispersion and paper variations. No physical simula-
tion is performed. Instead, each layer is a gray-level image whose
intensity gives the pigment density as follows: An image intensity
of T ∈ [0,1] yields a density d = 1 + β (T − 0.5), which is used to
modify the original color using formula 1. β is a global scaling fac-
tor used to scale the image texture values and allow arbitrary density
modifications. The three effects are applied in sequence and each
can be controlled independently (see Figure 4-(g,h,i)). The com-
putation is done per pixel using a pixel shader. The paper layer is
applied on the whole image whereas the other layers are applied
only on the object projection.

The user is free to choose any kind of gray-level textures for
each layer. We found it convenient to use Perlin noise textures
[Perlin 1985] for the turbulent flow, a sum of gaussian noises at
various scales for pigment dispersion and scanned papers for the
paper layer.

4.1.3 Other watercolor effects

The pigment density treatment recreates the traditional texture of
real watercolor. We then add, as in most previous techniques, sev-
eral typical watercolor effects:

Edge darkening: Edges are darkened using the gradient of the
abstracted image (see Figure 4-(f)). The gradient is computed on
the GPU using a fast, symmetric kernel:

∆(px,y) = |px−1,y − px+1,y|+ |px,y−1 − px,y+1|

The gradient intensity (used to modify the pigment density using
formula 1) is computed by averaging the gradient of each color
channel.

Any other gradient computation could be used depending on the
compromise between efficiency and realism needed by the user.
Our method is clearly on the efficiency side.

Wobbling: The abstracted image is distorted to mimic the wob-
bling effect along edges due to the paper granularity. The x offset is
computed with the horizontal paper gradient, and the y offset with
the vertical paper gradient (see Figure 4-(e)). The user can change
the paper texture resolution: Indeed, the real process involves com-
plex interactions and using the paper texture directly may produce
details at too fine a scale. By decreasing the resolution we keep the
overall canvas structure while decreasing the wobbling frequency.
We could have also used another texture for this effect as in [Chu

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Static pipeline illustrated for a 3d model: (a) 3d model, (b) original color chosen by the user, (c) toon shading, (d) dry brush (not
kept for this example), (e) wobbling, (f) edge darkening, (g) pigment dispersion layer, (h) turbulence flow layer, (i) paper, (j) final result.

and Tai 2005]. As a side effect, the paper offset adds noise along
edges, which decreases the aliasing effect.

Dry brush: The dry brush effect occurs in watercolor painting
when a nearly-dry brush applies paint only to the raised areas of a
rough paper. We simulate this effect with a simple threshold of the
paper height (represented by the paper texture intensity) as illus-
trated in Figure 4-(d).

This effect has not proven to be very useful in practice because
it is applied to the whole scene. However one can easily add color
conditions or masks in the pipeline to selectively apply such an ef-
fect.

4.2 Abstraction

The watercolor rendering obtained by our pipeline generally seems
too detailed compared to a painting done by hand. Indeed, the small
details produced by a 3d rendering are often “too perfect”, which
is a common issue in computer graphics. Similarly, if we take a
photograph as input, the result appears too precise.

We propose to use various abstraction steps to simplify the
shapes and to abstract the color and the illumination of our input
data before adding the watercolor effects already described. The
first abstraction step aims at reproducing uniform color regions by
abstracting the illumination in the case of a 3d model (see Sec-
tion 4.2.1) or segmenting the original image (see Section 4.2.2) and
the second abstraction step aims at discarding the small regions that
remains after the first step (see Section 4.2.3).

4.2.1 Abstraction of the illumination of a 3d model

In watercolor painting, shading is usually performed by composit-
ing pigment layers. In wet-in-wet painting, this superposition re-
sults in a smooth shading, whereas in wet-on-dry painting, it results
in sharp color areas. To obtain these shaded areas, a toon shader
as described in [Lake et al. 2000] is used. A smooth transition be-
tween areas can be obtained by smoothing the toon texture (Figure
6). We apply toon shading using our color modification method so

that it stays consistent with the rest of the pipeline. The user thus
simply has to provide a gray-level 1d texture.

Figure 6: Toon shading and the corresponding toon texture

Depending on the original 3d model and even with a toon shad-
ing there are still sometimes lots of details. Therefore, we propose
to smooth the normals of the model before computing the illumina-
tion. The normal smoothing is applied by replacing a vertex nor-
mal by the average of its neighbors normals. This process can be
repeated to obtain a higher smoothing. Normal smoothing removes
shading details but preserves silhouettes (Figure 7).

Figure 7: Normal smoothing: by averaging the normals the user
simplifies the shading progressively to the desired level.

4.2.2 Abstraction of the color of an image

When dealing with a photograph, we no longer have uniform color
regions as given by the toon shader. To obtain such regions, we

(a) (b)

(c) (d)

Figure 8: Image abstraction: (a) original image, (b) without abstraction: direct application of watercolor effects, the image is too detailed, (c)
result after segmentation, (e) final result with segmentation and morphological smoothing.

propose a color segmentation step. We use a mean shift algorithm
[Comaniciu and Meer 1999] to perform such a segmentation. This
gives a less detailed image as presented Figure 8-(c) showing the
uniform color regions typical in watercolor.

4.2.3 Morphological Smoothing

After the previous step, either segmentation or illumination smooth-
ing, some small color regions remain. We allow the user to apply a
morphological smoothing filter (sequence of one opening and one
closing) to reduce color areas details. The size of the morphologi-
cal kernel defines the abstraction level of color areas and silhouettes
(Figure 8-(d)). It can be viewed as the brush size. The same kind of
2d approach is used by [Luft and Deussen 2005], except that they
use a Gaussian filter and thresholds to abstract their color layers.

5 Temporal coherence

In the static version of our watercolor pipeline, we have shown that
a convincing watercolor simulation may be created by using texture
maps that represent both low frequency turbulent flow and high fre-
quency pigment dispersion. Using this method in animation leads
to the “shower door” effect, where the objects slide over the pig-
ments textures. Ideally, we would like the pigment effects to move
coherently with each object, rather than existing independently.

While it is tempting to simply map pigments textures onto each
object (as in [Lum and Ma 2001] for example), this leads to prob-
lems with ensuring the scale and distribution of noise features. For

example, the features of a pigment dispersion texture that appears
correct from a specific camera position may blur if the camera is
zoomed out. Therefore, we seek a compromise between the 2d lo-
cation of pigments and the 3d movements of objects.

This question has already been addressed in the case of the can-
vas, leading to two approaches of a dynamic canvas [Cunzi et al.
2003; Kaplan and Cohen 2005]. The problem there was to match
the canvas motion to the camera motion. In the watercolor case,
we want the pigment textures to follow each objects motion, not
just the camera. We thus propose two different methods that each
extend one of the previous dynamic canvas approaches.

As far as the abstraction steps are concerned, the toon shader and
normal smoothing are intrinsically coherent since they are com-
puted in object space. On the other hand, the morphological fil-
ter is not coherent from frame to frame, since it is computed in
image space. Solving this question would probably need to fol-
low color regions along the animation as in “video tooning” [Wang
et al. 2004]. Such a method would imply the loss of interactivity
and thus we have preferred to concentrate here on the watercolor
effects part of the pipeline and leave the incoherency of the mor-
phological smoothing for future work.

5.1 Attaching multiple pigment textures in object

space

Our first method takes inspiration both from Meier’s work on
painterly rendering [Meier 1996] and Cunzi et al.’s work on a dy-
namic canvas [Cunzi et al. 2003].

(a) (b) (c)

Figure 9: (a,b) Our particle method illustrated with a chessboard texture. (a) Rotation: 2d textures follow 3d particles (black dots), (b)
z-translation: An infinite zoom of the texture maintains a constant frequency. (c) Result when using our pigment and paper textures.

We decompose the possible movements of the object between
translation along the z−axis and the other transformations. The idea
is that, when an object is moving towards (or away from) the cam-
era, we have to maintain a constant frequency of pigments while the
size of the object projection increases or decreases in image space.
For the other motions the pigments have to follow the object with-
out being distorted by the perspective projection.

Like Meier, we use particles (points on the 3d mesh) to attach
our drawing primitives to the object. Our primitives are the pigment
density textures. They are much larger than brush strokes, therefore
we need far fewer particles.

The particles are distributed on the mesh by pro-
jecting onto the mesh regularly sampled points of
the object bounding box. In practice, for a simple
object that stays totally in the camera field of view,
we use 6 particles (the middles of the 6 faces of the
bounding box), shown by the black dots on the right
hand side. Pigment textures are then drawn in im-
age space centered on each particle projection, and blended while
rendering the mesh. The blending amount of each texture is de-
fined for a vertex according to the 3d distance between the vertex
and each particle. The closer a vertex is to a particle, the more
the corresponding texture will be taken into account (see the blend-
ing in false colors). Such a blending avoids the popping effect that
occurs in painterly renderings when strokes appear due to visibil-
ity. Indeed, a pigment texture attached to a non visible particle can
continue to influence the final rendering, allowing for a continuous
evolution. The result is that pigments are drawn in 2d space but
move according to the 3d object motion (fig.9-(a)).

This does not define how to scale the texture according to a
z−translation. As pigments are defined in screen space, we would
like to keep their frequency constant. But if we directly keep the
texture scale unchanged, the object will seem to slide on the texture
during a zoom. To avoid this effect, an infinite zoom in the texture is
used, as described in [Cunzi et al. 2003]1. Such an infinite zoom is
produced by cycling continuously between successive octaves (that
is successive scales) of the pigment textures. Here we use four oc-
taves. The observer seems to zoom into the pigment textures, while
the frequency of the pigments stays constant (fig.9-(b)).

5.2 3D Animation of 2D Flow Effects

As pointed out in [Kaplan and Cohen 2005], no transformation
on a 2d texture map can exactly match motion fields produced by
arbitrary movements in a 3d environment. An alternative solution
is to move the constituent elements of the 2d map in 3d and then
to reproject those elements back to 2d to create a new texture map.
We associate noise features with 3d particles on the surface of the
objects. At runtime, we project those particles into screen space

1The source code is available at
artis.imag.fr/Members/Joelle.Thollot/dynamic canvas/

Figure 10: An overview of the interactive noise generation system.
First, the models vertices are projected to screen space. Next, the
system determines the amount of screen space occupied by each
visible triangle. This determines the number of randomly posi-
tioned features to draw to create a noise texture of the appropriate
frequency. Randomly colored, alpha blended quadrilaterals of that
frequency are drawn at feature locations, creating the texture. The
alpha texture is shown inset.

and draw features into a 2d texture, reconstructing new noise and
turbulence textures for every frame (see Figure 10).

Turbulent flow can be represented as a harmonic summation of
noise textures [Perlin 1985]. Noise is characterized by randomly
valued (a color value typically) changes in a field of arbitrary di-
mension where the changes in value occur with a constant spatial
separation, referred to as frequency f . Features are the locations at
which changes in the field occur. Therefore, following the Perlin
noise, we desire a continuously generateable 2d noise texture with
the following properties, 1) features occur at a specific frequency,
2) feature values are pseudo-random, 3) frequency range is band-
limited, 4) features move with the surfaces. Note that properties 1
and 4 are contradictory and may not be simultaneously achievable
for arbitrary transformations.

An approximation of the 2d Perlin noise may be obtained by in-
terpolating between random grayscale values located at grid points,
representing features, placed at distance f apart, where f is the de-
sired frequency of the noise [Ebert 1999]. Though we cannot use a
grid, since our feature points move in 3d, this is the basic approach
we adopt.

A noise feature is represented in our program with a structure
consisting of random barycentric coordinates, β = b0,b1,b2 and a
random grayscale color, c. A feature of frequency f may be drawn
using a quadrilateral in screen space centered at β with width and
height f , using an alpha texture defined by the function 6t5−15t4 +
10t3 [Perlin 2002] (shown in Figure 11d) and color c. The alpha
texture is used to emulate interpolation between adjacent features.

A noise texture N f is computed as follows. First, for every vis-
ible triangle (surface face), ti, we compute the amount of image
space, λi it occupies. Then, we draw λi/(f ∗ f) features for every
ti. The location of each feature is calculated by using each ti’s ver-
tices (projected into screen space) as control points for the features

(a) Noise textures

(b) (c) (d) (e) (f)

Figure 11: (a) Progressive levels of noise generated interactively with diminishing frequencies. (b) Compositing noise levels from (a) yields
a turbulence texture or (c) a pigment texture - using only high frequency noise textures. (d) The alpha texture used to draw the features, (e,f)
Notice how the pigments and turbulence features follow the surface. No paper texture is used for these images.

barycentric coordinates. This creates a noise texture with average
feature distribution of frequency f .

A turbulence texture may be created by summing a series of such
noise textures - a typical series of frequencies might be, for base
frequency F0 = f , F1 = f /2,F2 = f /4 · · ·FK = f /2K - by blending
them with the contribution of each N j being defined by the har-
monic function 1/ f . Examples are shown in Figure 11.

5.2.1 Minimizing Artifacts

This method yields an average frequency distribution of f rather
than an exact distribution. Two problems may occur because of
this random placement. First, we are not guaranteed to completely
cover the image space. Attempting to order the spacing of the parti-
cle placement may not be useful since we cannot predict what type
of perspective deformation the triangle will undergo. Therefore, the
screen color is initially cleared to a flat middle gray; features then
color the screen as an offset from a strict average rather than defin-
ing the actual screen color themselves as in standard noise. This
may overly weight the screen to gray, but if our random distribution
of feature locations is good (see [Turk 1990] for a discussion), then
this problem will be minimal and in practice, this seems to be true.
Second, we may create hotspots of feature placement when features
overlap. Again, a good initial distribution of features will mini-
mize this problem, but in practice, the blending function is smooth
enough that this issue is not apparent.

The amount of screen space occupied by each surface face λi
changes with camera motion. Because the number of features
drawn is dependent on this value, new features may come into and
out of existence very quickly which will cause popping artifacts if
not handled with care. We minimize this artifact by taking advan-
tage of the fact that our turbulence texture is the sum of a series
of noise textures. Continuity is maintained by moving features be-
tween each noise texture N j and textures N j+1 and N j−1. When λi
grows larger, features are moved from N j−1 to N j proportional to
the amount of screen space gained. Conversely, when λi shrinks,
features are moved from N j+1 to N j and from N j to N j−1. Because
features are transitioned between noise textures at different frequen-
cies an ordering between noise texture levels is created. Therefore,
the turbulence appears consistent at different resolutions, i.e. if an
object is zoomed away from the viewer, the low frequency noise
is transitioned to high frequency noise so the visual characteristics

of the turbulence appears consistent. In order to maintain the fre-
quency distribution, one feature is moved between each noise tex-
ture levels at a time, linearly scaling the width between levels. With
this method, popping artifacts occur only at the highest and lowest
frequencies. At high frequencies, the artifacts were very tiny and
so, not very noticeable. Low frequency errors can be avoided by
making the lowest frequency larger than the screen.

As a final consideration, the surface meshes in the scene may be
composed of triangles that occupy screen space of less than f ∗ f
pixels, in which case no face will draw any features of the desired
frequency! We create a hierarchy of faces, grouping faces into su-
perfaces as an octree. We then analyze the screen space occupied
by the superfaces in order to determine the number of features to
draw at low frequencies. Only normal similarity is considered when
creating our hierarchies, and though better schemes may exist for
grouping faces, this method works well in practice.

6 Results and Discussion

We show some results obtained by our method using
as input either a photograph or a 3d model Figure 12.
More watercolor results and some videos can be found in
artis.imag.fr/Membres/Joelle.Thollot/Watercolor/.
As most of the work is done by the GPU, the static pipeline runs
at a speed similar to a Gouraud shading (between 25 frames per
second for 25k triangles downto 3 frames per second for 160k
triangles) for a 750× 570 viewport on a Pentium IV 3GHz with a
GeForce FX 6800.

Evaluating the visual quality of watercolor renderings is not an
easy task. Figure 13 shows a comparison we have made with Curtis
original method [Curtis et al. 1997] that was a full physical sim-
ulation. Our method allows us to produce images that stay closer
to the original photo while allowing the user to vary the obtained
style. On the other hand Curtis’ result benefits from his simulation
by showing interesting dispersion effects. However, it is precisely
these dispersion effects that make that method unsuitable for ani-
mation. In light of this, it is unclear whether we lose anything by
not doing a full fluid flow simulation in an animated or interactive
environment.

The temporal coherence effects of our two methods yield distinct
results with several tradeoffs. The texture attachment method yields
good results for a single object viewed with a static background.

Figure 12: Watercolor-like results. The first line shows the original photograph and the resulting watercolor-like image. The second line
shows other filtered photographs. The third line shows a gouraud shaded 3d scene and the resulting watercolor rendering with two versions
of the Venus model without and with morphological smoothing. The fourth line shows more watercolor-like 3d models.

(a) (b) (c) (d)

Figure 13: Comparison with Curtis result: (a) original image, (b) Curtis watercolor result, (c,d) our results.

The number of particles used to render the animation has to be a
compromise between two effects: Too many particles would tend
to blur the high frequencies due to texture blending whereas not
enough particles creates scrolling effects due to independent move-
ments of each patch of texture. Some distortion occurs at pixels far
from attachment points, but in practice, using at least 6 attachment
points minimized this effect. Ideally the number of particles should
be adapted to the viewpoint. For example after a zoom, the particles
may become too far from each other and some new particles should
be added.

Calculating flow textures interactively matched the movement of
the turbulent flow and pigment dispersion exactly with the motion
of the objects in the scene, making it useful for complex animations
in immersive environments. Unfortunately, this method is much
more expensive to compute since between 1-10 noise textures and
1-2 turbulence textures must be interactively constructed for every
frame, yielding as few as 1 frame a second for 60k triangles. Fi-
nally, small scale popping artifacts may be visible yet we found this
was not very noticeable for complex turbulence textures possibly
due to the low alpha value assigned to such high frequency features.
We allowed the user to control several variables (such as which fre-
quencies to use) in order to construct the pigment and turbulence
textures. This yielded a wide range of visual styles yet those styles
did not always exactly correspond with those produced by the static
method. Reasonable fidelity to the static method was achievable as
long as the frequencies we used corresponded well with the static
pigment repartition texture.

7 Conclusions

We have presented a watercolor rendering technique that is fully
controllable by the user, allowing the production of either coherent
animations or images starting from a 3d model or a photograph.
Our framework is interactive and intuitive, recreating the abstract
quality and visual effects of real watercolors.

Each step of the pipeline can still be improved, especially by of-
fering the user a choice between slower but better methods for each
effect. This can be suitable for producing movies when high quality
is most important. Ideally our idea would be to keep our pipeline
as a WYSIWYG interface for preparing an offline full computation
of more precise effects.

As mentioned in the paper, there are several issues that we want
to address in the future. The diffusion effect would be interesting
to recreate. We can think of using work like [Chu and Tai 2005]
to perform diffusion computation but it opens the question of how
to control such an effect when dealing with an already given scene.
To stay in our philosophy we have to think of simple and intuitive
ways of deciding which part of the image must be concerned with
the diffusion.

A lot of questions remain concerning the temporal coherence.
The methods we propose do not target the morphological smooth-
ing step or any image processing. Taking inspiration from ”video
tooning” [Wang et al. 2004] we would like to address this problem
in our pipeline. Another possibility would be to use image filters
like in [Luft and Deussen 2005] to decrease the popping effects
without adding too much computation.

Acknowledgments

This research was funded in part by the INRIA Action de Recherche
Cooprative MIRO (www.labri.fr/perso/granier/MIRO/).

Thanks to Laurence Boissieux for the 3d models Fig 1-(a,b), 4
(c©Laurence Boissieux INRIA 2005). Thanks to Gilles Debunne
for the reviewing and the web site.

References

BURGESS, J., WYVILL, G., AND KING, S. A. 2005. A system for
real-time watercolour rendering. In CGI: Computer Graphics
International, 234–240.

CHU, N. S.-H., AND TAI, C.-L. 2005. Moxi: real-time ink disper-
sion in absorbent paper. In Siggrpah 05, ACM Press, 504–511.

COMANICIU, D., AND MEER, P. 1999. Mean shift analysis and
applications. In ICCV (2), 1197–1203.

CUNZI, M., THOLLOT, J., PARIS, S., DEBUNNE, G., GASCUEL,
J.-D., AND DURAND, F. 2003. Dynamic canvas for immersive
non-photorealistic walkthroughs. In Graphics Interface, A K
Peters, LTD., 121–129.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER,
K. W., AND SALESIN, D. H. 1997. Computer-generated water-
color. In Siggraph 97, ACM Press, 421–430.

EBERT, D. 1999. Simulating nature: From theory to application.
In Siggraph Course. ACM Press.

JOHAN, H., HASHIMOTA, R., AND NISHITA, T. 2005. Creating
watercolor style images taking into account painting techniques.
Journal of Artsci, 207–215.

KAPLAN, M., AND COHEN, E. 2005. A generative model for
dynamic canvas motion. In Computational Aesthetics, 49–56.

LAKE, A., MARSHALL, C., HARRIS, M., AND BLACKSTEIN,
M. 2000. Stylized rendering techniques for scalable real-
time 3d animation. In NPAR: International symposium on Non-
photorealistic animation and rendering, ACM Press, 13–20.

LEI, E., AND CHANG, C.-F. 2004. Real-time rendering of wa-
tercolor effects for virtual environments. In PCM: Pacific Rim
Conference on Multimedia, 474–481.

LUFT, T., AND DEUSSEN, O. 2005. Interactive watercolor ani-
mations. In PG: Pacific Conference on Computer Graphics and
Applications, 7–9.

LUM, E. B., AND MA, K.-L. 2001. Non-photorealistic rendering
using watercolor inspired textures and illumination. In PG: Pa-
cific Conference on Computer Graphics and Applications, 322–
331.

MEIER, B. J. 1996. Painterly rendering for animation. In Siggraph
96, ACM Press, 477–484.

PERLIN, K. 1985. An image synthesizer. In Siggraph 85, ACM
Press, 287–296.

PERLIN, K. 2002. Improving noise. In Siggraph 02, ACM Press,
681–682.

SMALL, D. 1991. Modeling watercolor by simulating diffusion,
pigment, and paper fibers. In SPIE.

TURK, G. 1990. Generating random points in triangles. In Graph-
ics Gems I, A. Glassner, Ed. Academic Press.

VAN LAERHOVEN, T., LIESENBORGS, J., AND VAN REETH,
F. 2004. Real-time watercolor painting on a distributed paper
model. In CGI: Computer Graphics International, 640–643.

VAN ROOJEN, J. 2005. Watercolor Patterns. Pepin Press / Agle
Rabbit.

WANG, J., XU, Y., SHUM, H.-Y., AND COHEN, M. F. 2004.
Video tooning. In Siggraph 04, ACM Press, 574–583.

